M1. (penalty for sig fig error =1 mark per question)
(a) neutron: relative mass $=1$ relative charge $=0$ (not 'neutral')
electron: relative mass $=1 / 1800 \rightarrow 0 /$ negligible or
$5.56 \times 10-4 \rightarrow 0$ relative charge $=-1$
1
(b) mass number (Do not accept 17.0)
oxygen symbol 'O’
(if 'oxygen' + - 'mass number = 17'(1))
(if 'oxygen'+ - 'mass number = 17'(0))
(if at N° given but $\neq 8$, treat as 'con' for M2)
(if Ip on Be, diagram = 0)
(ignore bond angles)
(not dot and cross diagrams)
(c)

QoL Linear (1) bent / V-shaped / angular (1)
(mark name and shape independently)
(accept (distorted) tetrahedral)
(if balls instead of symbols, lose M1 - can award M2)
(penalise missing 'Cl’ once only)
(not 'non-linear')
(d) $\quad M_{r}\left(\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}=58(.3)\right.$ (if At N^{o} used, lose M1 and M2)
moles $\mathrm{Mg}(\mathrm{OH})_{2}=0.0172$ (conseq on wrong M2) (answer to $\underline{3+\text { s.f. })}$

Page 2

$$
\text { moles } \mathrm{HCl}=2 \times 0.0172=0.0344 \text { or } 0.0343(\mathrm{~mol})(\text { process mark) }
$$

$$
\begin{aligned}
\mathrm{vol} \mathrm{HCl}= & \frac{0.0343 \times 1000}{1}=34.3-34.5\left(\mathrm{~cm}^{3}\right) \text { (unless wrong unit) } \\
& \text { (if candidate used } 0.017 \text { or } 0.0171 \text { lose M2) } \\
& \text { (just answer with no working, if in range = (4). } \\
& \text { if, say, } 34 \text { then }=(2) \text {) } \\
& \text { (if not } 2: 1 \text { ratio, lose } \mathrm{M} 3 \text { and } \mathrm{M} 4 \text {) } \\
& \text { (if work on } \mathrm{HCl}, \mathrm{CE}=0 / 4 \text {) }
\end{aligned}
$$

1

M2. (a) $\mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}$
$\mathrm{MgO}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2} \mathrm{O}$
Allow ionic equations
(b) Hydrogen collection

Using a gas syringe or measuring cylinder/ graduated vessel over water Allow if shown in a diagram

Measurements (i) P 1
(ii) T 1
(iii) $\vee 1$

Use ideal gas equation to calculate mol hydrogen or mass/Mr $\mathrm{Mol} \mathrm{H}_{2}=\mathrm{mol} \mathrm{Mg}$ (Mark consequentially to equation)
(c) $\mathrm{MgCl}_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{NaCl}$ Species

Balanced
Allow an ionic equation

$$
\mathrm{Mg}(\mathrm{OH})_{2} \rightarrow \mathrm{MgO}+\mathrm{H}_{2} \mathrm{O}
$$

(d) Allow 2 significant figures in these calculations and ignore additional figures

EITHER

Mol MgO obtained stage $2=$ mass $\mathrm{MgO} / \mathrm{MrMgO}$

$$
=6.41 / 40 .(3) \quad=0.159 \text { Allow } 0.16
$$

Allow method mark if formula of magnesium oxide or M_{r} incorrect

Moles of $\mathrm{Mg}=$ moles of H_{2} hence
Mol original $\mathrm{MgO}=\mathrm{mol} \mathrm{MgO}$ from stage $2-\mathrm{mol} \mathrm{H}_{2}$
$=0.159-0.0528=0.106$ Allow 0.11
Mark consequentially to moles of magnesium oxide determined above

OR
Mass MgO formed from $\mathrm{Mg}=0.0528 \times \mathrm{M}_{\mathrm{r}} \mathrm{MgO}$ \{or 40.(3) $\}$
$=2.13 \mathrm{~g}$
Allow 2.1 (1)
Allow method mark if formula of magnesium oxide or Mr incorrect

Mass original $\mathrm{MgO}=$ total mass MgO - mass formed from Mg

$$
\begin{equation*}
=6.41-2.13=4.28 \mathrm{~g} \quad \text { Allow } 4.3 \tag{1}
\end{equation*}
$$

Mark consequentially mass of magnesium oxide determined above

NB
As there is an error in part (d), the mass of sample should have been 6.25 NOT 2.65, award full marks to any candidate who has crossed out their correct first answer.

M3. (a) (i) 4.86×10^{-3}
(ii) 2.43×10^{-3}
(mark conseq on (a)(i))
(iii) 2.43×10^{-2}
(mark conseq on (a)(ii))
(iv) $3.01 / 2.43 \times 10^{-2}$
(mark conseq on (a)(iii))

124
(Do not allow 124 without evidence of appropriate calculation in (a)(iii))
(b) $\quad \mathrm{M}_{(}\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)=106$
$\mathrm{M}_{\mathrm{r}}\left(\mathrm{xH}_{2} \mathrm{O}\right)=250-106=144 \quad$ (mark conseq on M1)
$x=8$
(mark conseq on M2)
(Penalise sf errors once only)
(c) (i) $\mathrm{PV}=\mathrm{nRT}$
(ii) Moles $\mathrm{A}_{r}=325 / 39.9=8.15$
(accept $M_{r}=40$)

$$
\begin{aligned}
\mathrm{P}= & \mathrm{nRT} / \mathrm{V}=(8.15 \times 8.31 \times 298) / 5.00 \times 10^{-3} \\
= & 4.03 \times 10^{6} \mathrm{~Pa} \text { or }=4.03 \times 10^{3} \mathrm{kPa} \\
& \text { Range }=4.02 \times 10^{6} \mathrm{~Pa} \text { to } 4.04 \times 10^{6} \mathrm{~Pa} \\
& \text { (If equation incorrectly rearranged, } \mathrm{M} 3 \& \mathrm{M} 4=0 \text { If } n=325, \\
& \text { lose } M 2 \text {) }
\end{aligned}
$$

(Allow M1 if gas law in (ii) if not given in (i))

M4. (a) (i) $100 \times 10^{-3} \times 0.500=5.00 \times 10^{-2}(\mathrm{~mol})$
accept $5 \times 10^{-2} / 0.05$
(ii) $27.3 \times 10^{-3} \times 0.600=1.64 \times 10^{-2} / 1.638 \times 10^{-2}(\mathrm{~mol})$ only
(iii) $1.64 \times 10^{-2}(\mathrm{~mol})$

Mark conseq on (ii)
(iv) $5.00 \times 10^{-2}-1.64 \times 10^{-2}=3.36 \times 10^{-2}(\mathrm{~mol})$

Mark conseq on (i) \& (iii)
(v) $3.36 \times 10^{-2} \times 1 / 2=1.68 \times 10^{-2}(\mathrm{~mol})$

If 2.78×10^{-2} used 1.39×10^{-2}
Mark conseq on (iv)
$1.68 \times 10^{-2} \times 132(.1)$ or $1.39 \times 10^{-2} \times 132(.1)$
Mark for $M_{\text {r }}$
$=2.22 \mathrm{~g}$ or 1.83 g

1
(b) $\mathrm{pV}=\mathrm{nRT}$
$\mathrm{n}=\frac{0.143}{17}=8.4(1) \times 10^{-3}(\mathrm{~mol})$
$\mathrm{T}=\frac{\mathrm{pV}}{\mathrm{nR}}=\frac{100000 \times 2.86 \times 10^{-4}}{8.31 \times 8.4 \times 10^{-3}}$
$=408.5-410.5(\mathrm{~K})$
Mark conseq on moles
Note Sig. fig. penalty - apply once if single sf given, unless calc works exactly

M5.B

M6.C

M7.D

